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The ability of a drop to  stick to  a solid surface is investigated when the surrounding 
fluid is in motion. The specific problem analysed consists of a small drop on a planar 
surface immersed in a second immiscible fluid which is flowing parallel to the solid 
surface a t  a constant rate of strain. An expression is obtained, in terms of 
experimentally measurable quantities, for the value of the rate of strain beyond 
which the drop cannot maintain contact with a fixed position on the solid. The most 
limiting restrictions assumed in the analysis are that both the advancing contact 
angle and the contact angle hysteresis must be small. 

1. Introduction 
Drops sticking to the surfaces of solids are encountered in numerous situations. 

Their presence can be desirable or detrimental depending upon the particular 
circumstance. I n  either case, i t  would be of value to know the various critical 
conditions beyond which the drops cease to stick. Part  1 (Dussan V. & Chow 1983), 
and Part 2 (Dussan V. 1985) of this series have focused on the influence of gravity 
in dislodging the drops from non-horizontal surfaces. The objective of this investi- 
gation is to evaluate the ability of the motion of the surrounding fluid to remove the 
drops by sweeping them across the solid surface. 

The specific problem analysed consists of a drop on a surface surrounded by an 
immiscible fluid undergoing a motion given by u = (dU/dZ) Zi, excluding the 
immediate vicinity of the drop, where dU/dZ denotes a constant (see figure 1 a ) .  The 
location of the drop remains stationary for small values of dU/dZ; however, upon 
exceeding a critical value, the drop moves continuously across the surface, no longer 
able to remain attached to  the solid a t  one particular position. The aim of this study 
is to determine the critical value of dU/dZ for a given system of materials in terms 
of experimentally measurable quantities. It is assumed that this problem captures 
the essence of the more general problem consisting of a rather small drop on a solid 
surface well embedded within the linear portion of the velocity field of the surrounding 
fluid. It is of practical interest to know the speed at which the surrounding fluid 
must flow so that small drops are dislodged and swept away. 

The physical characteristic responsible for the drops appearing to  stick to the solid 
surface is the hysteresis in the contact angle. This refers to the experimental 
observation that contact lines do not move when the value of the contact angle, 0, 
lies within the interval (61R, eA). I n  this study the contact angle will be evaluated 
from within the drop. Hence, the drop would advance forward displacing the 
surrounding fluid from the solid surface a t  those positions along the contact line for 
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FIGURE 1. A side view of the drop is given in (a). The y-axis points into the page. A plan view 
of the surface of the solid is given in ( b ) .  

which 0 is greater than 0,, often referred to as the advancing contact angle; and 
conversely, the drop would recede, being removed from the solid surface and replaced 
by the surrounding fluid, at those positions along the contact line for which 0 is less 
than OR, the receding contact angle. 

As in the two previous studies, it is assumed that the contact line has two 
straight-line segments along the sides of the drop when it is in its critical configuration 
(see figure 16). It is also assumed that 0 = 0, for - # A  <# < $,, and 0 = 0, for 
4, < 4 < 2x-4,. [Refer to Dussan V. & Chow (1983) for a comprehensive 
justification of these assumptions.] Hence, the boundary-value problem to be solved 
contains boundary conditions of the mixed kind. That is to say, along the straight-line 
segments of the contact line, the local values of the contact angles are not known 
a priori; while, along the remainder of the contact line, the variation in the value 
of the contact angle is given, with the location of the contact line being a part of the 
solution. The problem is further complicated by the fact that the locations of the ends 
of the straight-line segments, i.e. $A and #,, are also part of the solution. 

There are some significant differences between the current problem and that 
presented in Parts l.and 2. In the previous studies, the fluids are static when the drop 
is in its critical configuration; however, in the present investigation the fluids are in 
motion. Hence, an analysis of the velocity field is necessary in order to determine 
the critical value of dU/dZ. It also follows that the dependent variables scale 
differently. 
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Another important difference between the two sets of problems lies in the 
information that can be deduced by performing a macroscopic force balance on the 
entire drop. In the case of a drop on a non-horizontal surface, the force balance yields 

( p d - p s ) g V  sin ye = wc~(cos0~-cos0,) ,  

where pd7 ps, g ,  V ,  w ,  c ~ ,  and yc denote, respectively, the densities of the drop and 
surrounding fluids, the gravitational constant, the volume of the drop, the width of 
the drop, the surface tension, and the angle of inclination of the solid with respect 
to the horizontal. Hence, the value of ye can be thought of as playing a role similar 
to that of dU/dZ in the current problem. Strictly speaking, this expression is not 
predictive because the width of the drop is unknown, its value being determined upon 
performing a detailed analysis of the shape of the drop. However, if one is concerned 
with the case when (@,-@,)/@, 6 1 then it is fairly straightforward to show that 

to lowest order for small drops. Hence, the critical angle of inclination, yc, can be 
determined without performing any detailed analysis of the shape of the drop. This 
is not possible for the current problem. Even in the case of small hysteresis the 
macroscopic force balance merely yields an identity. Hence, a detailed analysis 
cannot be avoided. 

In $2.1 the variables are scaled and the appropriate boundary-value problem 
governing the motion of the fluids within and surrounding the drop are identified. 
The dependent variables are expanded asymptotically in terms of 0, as 0, -+ 0, and 
the equations governing the lower-order modes are determined in 52.2. In $2.3 the 
boundary-value problem governing the shape of the drop is derived. The problem is 
further simplified by expanding the shape of the drop asymptotically in terms of 
(0, -OR)/@, as (0, - @,)/@,+O. The equations governing the lower-order modes 
appear in $2.4. In $3 the solution of the lowest-order mode is obtained. Finally, in 
$4 the lowest-order non-trivial value of dU/dZ as Q A + O  and (@,-@,)/@,+O is 
determined. Conclusions appear in 55. 

2. Formulation 
2.1, Scaling and identi$cation of boundary-value problem 

It will prove convenient when formulating the problem to make use of the 
rectangular Cartesian coordinate system (z, y, z) illustrated in figure 1. Here the z-axis 
points in the direction perpendicular to the surface of the solid and into the drop, the 
x-axis lies tangent to the solid surface coinciding with the direction of motion of the 
surrounding fluid far from the drop, and the origin is located on the solid surface 
equidistant from all four ends of the two straight-line segments on the contact line. 
A polar coordinate system ( r ,  q5) defined on the (z = 0)-plane is also useful, refer again 
to figure 1. The orientation of the solid surface relative to gravity need not be 
specified since the analysis is restricted to small drops. That is to say, only the 
lowest-order mode represented by the limit as the Bond number ( p d - p s ) q E / a  
approaches zero is investigated. 

It is natural to scale each immiscible fluid in the system differently. The fluid 
surrounding the drop will be considered first. Various choices exist for the lengthscale. 
Since the disturbance created by the presence of the drop on the constant rate of 



384 E. B. Dussan V .  

strain, dU/dZ, is of prime concern, the variables x, y, and z are scaled by a ,  the radius 
of the circle formed by the contact line under static conditions when the contact angle 
takes on a value 0, along its entire length. The velocity vector u is scaled by 
(dU/dZ) a ,  denoted by 17,. The pressure is scaled by p, Usla. Upon introducing these 
scales into the Navier-Stokes and continuity equations one obtains 

Re, fi* 66 = - 6 P +  @fi, (2.1) 

6.6 = 0, (2.2) 

where Re, denotes the Reynolds number p, lJs alp,, 

pus denotes the dynamic viscosity of the fluid surrounding the drop, and the 
circumflex above a variable indicates that i t  has been made dimensionless with the 
scales indicated above. Finally, the boundary conditions away from the solid, and 
on that  portion of the solid which bounds the surrounding fluid are, respectively, 

(2.3) 

f i = o  a t z = O  ( 2 , Q ) $ d , t  (2.4) 

where d denotes the region on the solid surface in contact with the drop. 
The scales of the variables describing the state of the fluid within the drop differ 

somewhat from those stated above. This is mainly a consequence of the confined 
geometry and the different physical characteristics of the fluid. The variables x and 
y are scaled by a ;  while, z is scaled with a@, in anticipation of restricting the 
investigation to drops with small slopes, which in addition, greatly influences the 
scales of the remaining variables. The i- and j-component of the velocity, i.e. u and 
v respectively, are scaled by U,; however, the k-component, w, is scaled by U, O,, 
where u d  denotes u,ps The pressure is scaled by pa U,/a @;. tJpon intro- 
ducing these scales into the Navier-Stokes and continuity equations one obtains 

aG v . C , + - = 0 ,  
a2 H 

where Re, denotes the Reynolds number (pd t J d a ) / ( p d ) ,  

uH = ui+vj, p, denotes the dynamic viscosity of the fluid inside the drop, and 
the bar above a variable indicates that it has been made dimensionless with the 
scales indicated above. The remaining boundary conditions a t  the surface of the 
solid are given by w = C, = o a t  z = 0, ( x , Y ) E ~ .  (2.7a, b )  

f The symbol $ denotes 'is not an element' 
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The boundary conditions at the fluid interface of the drop and at the contact line 

(2.8) 

are yet to be specified. The kinematic boundary condition is given by 
- u H * V H h - ~  = o at  5 = h, 

where 
field requires 

= h((x, 5) denotes the location of the fluid interface. Continuity of the velocity 

(2.9a, b )  P f i ? , = U , S @ ,  and ' L j l = @ b @ A  a t  z=h. 
pd pd 

The dynamic boundary condition is given by 

(2.10) 

where and f denote the stress tensor made dimensionless with pd U d / a O i  and 
,u,U,/a respectively; Ca denotes the usual capillary number scaled with @i, 
,ud U,d/a@i ; the mean radius of curvature is given by 

and the unit outward normal is given by 

(2.13) 

Finally, the boundary condition at  the contact line is given by 

where the local value of the contact angle is given by 

sin O = n-rn at  ((2, g)lh = o}, (2.14) 

where the unit normal to the contact line pointing away from the drop and parallel 
to the surface of the solid is given by 

(2.15) 

and the values of $, and $R are part of the solution. 

given by r 

The remaining requirement is the specification of the volume of the drop. It is 

(2.16) 
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It is important to realize that a solution does not exist for arbitrary values of the 
parameters appearing in the above governing equations and boundary conditions : 
@,, @,, V/a3@,, ca,  pd/p,, ,ud/& and p,aa/&, denoted by D. [Note that 
Re, = @: CaD, and Red = (pa/&) (,us/&)’ 8: CaD.3 The local value of the contact 
angle will not satisfy the condition given in (2.13) unless the rate of strain in the 
surrounding fluid dU/dZ takes on a specific value, the determination of which is the 
heart of the problem. That is to say, for given values of the parameters, the value 
of Ca, ,u,(dU/dZ)a/u@I, interpreted here as a dimensionless dU/dZ, must be 
determined for which a solution exists. Thus the principal objective of this study is 
the determination of the function S, where 

(2.17) 

2.2. Lubrication equations 
The analysis of the boundary-value problem presented in 52.1 simplifies considerably 
by restricting the value of @,, and thus 0,, to be small. For this reason, only the 
lowest-order mode in the limit as 0, approaches zero will be investigated. 

From a formal point of view, the only variables that will be determined which 
describe the motion of the surrounding fluid are ri, and jio, where 

(2.18a) 

(2.18b) 

valid in the limit as 8,+0. Substituting the above into the Navier-Stokes and 
continuity equations (2.1) and (2.2) gives respectively 

(2.19) 

(2.20) 

To lowest order, the boundary conditions (2.3) and (2.4) are 

I a a ~ = i  asz+co, (2.21) az. 
fi0 = 0 at 2 = 0, ( 2 , @ ) $ d o ,  (2.22) 

where do denotes the limit of d as @,-to. 

expanded asymptotically in a similar fashion 
The dependent variables describing the dynamics of the fluid within the drop are 

(2.23 a )  

(2.233) 

(2 .23~)  
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Other solutions of (6.1 a )  are given by 

0 = A2 + ~2 B2 - c,[R, -PI. (6 .3 )  

Substitution of A2 from (6 .3)  into ( 6 , l b )  shows that B must now satisfy the cubic 

(6 .4 )  
equation 

0 = B3[ 1 - c2d,] - B[d, R, - d,c,  R, - d2c,,u] - d,. 

We note that if A2 2 0 then (6 .3 )  gives 

c ~ [ R , - P ] - c Z B ~  2 0 .  

The solutions of (6 .4 )  satisfying the above inequality are shown as curves I11 and IV 
in figure 2 (a). Branch I11 bifurcates from curve I and then asymptotes to the solution 
of the perfect problem as shown. The corresponding behaviour of A is shown in 
figure 2 ( b ) .  We note that a t  the bifurcation point A is zero and dA/dR, is finite. 
Furthermore branch I11 is an unstabIe solution. The remaining solutions of (6 .4 )  and 
the corresponding values of A are given by curve IV in figures 2 ( a )  and (b) .  These 
solutions begin at a point where dAldR, and d B / d R ,  are both infinite. One branch 
of the curves is stable and the other unstable in both cases. However, we see that if 
R, is increased from zero then the motion follows curve I unless the motion is per- 
turbed by a disturbance sufficiently large to enable A and B to tend to the stable 
singular points associated with the stable parts of IV. 

Case (ii): c, $: 0, d, = 0 

The steady solutions of (4 .22)  now satisfy the equations 

0 = A3 + c2 AB2 - c ~ ( R ,  -P )  A - cq, ( 6 . 5 ~ )  

0 = B(B2 + d2 A2 - d3 Rl) .  (6 .5b )  

We assume, without any loss of generality, that the constant cq is positive. We can 
see from (6 .5 )  that a possible solution is B = 0 and that A is then determined by the 
equation 

Alternatively we can see that (6 .5  b )  is satisfied if 

(6 .6 )  0 = A3 - c ~ ( R ,  -,u) - c,. 

B2 = -d2A2+d3R1 
and then A is determined by 

0 = [ l  - ~ 2 d 2 ]  A3 + A [  -c3 R, + C ~ , U + C ~ ~ ,  R,] -cq. (6 .8)  

If B2 2 0 then solutions of (6 .8 )  must satisfy the condition 

d,  A2 < d ,  R,. 

The solutions of (6 .6) ,  (6 .7 )  and (6 .8 )  are shown in figures 3, 4 and 5.  The two branches 
of the solution of (6 .6 )  are shown in figures 3 ( b ) ,  4 ( b )  and 5 ( b )  and are in each case 
labelled I and 11. One solution of (6 .8 )  is the curve 111 shown in each of these figures. 
This curve bifurcates from curve 11, so that B is virtually zero on 111. In  addition to 
111, (6.8) has the solution represented by IV in figures 3 ( b ) ,  4 ( b )  and 5 ( b ) .  We must 
distinguish between the following three cases : 

(a) Curves I and IV do not intersect. This occurs when cq is sufficiently large and the 
amplitudes A and B for this case are shown in figure 3. In  this case curve I is always 
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The expansion of the boundary condition a t  the contact line (2.13) is also rather 
straightforward. Substituting ( 2 . 2 3 ~ )  into (2.12), (2.13), (2.14), and (2.15) gives 

1 (2.35) 

J { #Ao < # < #Ra3 Contact line is a straight line segment 
27t-#R,, < y < 2n-#Ao9 

evaluated at the position of the contact line ha = 0. An explicit description of the 
location of the contact line in polar coordinates will also be used 

(2.36) 

The function Ro is obtained by solving the following equation 

Finally, the volume constraint (2.16) is given by 

(2.38) 

2.3. Solution of (0)-mode 

The motion of the fluids inside and surrounding the drop have been decoupled 
somewhat, a t  least to lowest order. That is to say, the motion of the fluid surrounding 
the drop can be determined separately, a direct consequence of the appearance of 
(2.30a, 6 ) .  Once the motion of the surrounding fluid has been determined, it can then 
be used to solve for the motion of the fluid in the drop. Specifically, i t  enters the 
boundary-value problem through (2.32) and (2.33) as a known shear stress driving 
the motion of the fluid within the drop. 

The solution of the boundary-value problem for the fluid surrounding the drop, 
(2.19), (2.20), (2.21), (2.22), and (2.30a,b), is simply 

2, = &i, go = constant. (2.39a, b )  

The boundary-value problem for the fluid within the drop is given by (2 .24a,  b ) ,  
(2 .25 ) ,  ( 2 . 2 6 a , b ) ,  (2.29), (2.31), (2.35). (2.37), (2.38), and 

ac0 q=ho = 1 ,  -1 a5 - - = 0 ,  (2.40a, b )  a;= - - 

where (2.40a,b) is a consequence of substituting (2.39a,b) into (2.32) and (2.33), 
respectively. Solving (2.24a, b ) ,  (2 .25 ) ,  (2.26a, b ) ,  (2.29), (2.31), and (2.4Oa, b )  in the 
usual way gives 

z=ho 

V H . ( S ~ ~ V H ( O ~ h o ) + ~ i ~ ~ ~ o )  = 0 for ( ~ , i j ) ~ i Z ~ .  (2.41) 

{ ~ 2 - 5 h 0 } V , ( V ~ L o ) + i ~ ,  (2.42) 

It is useful to note that uHo, and its height averaged local value, denoted by QHo, 
are given respectively by 

- 1 
uHo = -- 

9 0  
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where 

2.4. Expansion of (0, -OR)/@, 
Obtaining the solution to  (2.41), i.e. determining 6, and Ca for given values of the 
parameters (0, -OR)/@, and V / a 3 0 ,  introduced by the boundary condition (2.35) 
and volume constraint (2.38), is a difficult non-linear boundary-value problem. 
The nonlinearity enters through both the governing partial differential equation and 
the boundary condition at the contact line, whose location, (2.37), itself is part of the 
solution. I n  order to make the problem tractable, an expansion is performed in the 
parameter (@A-@R)/OA, denoted hereafter as E ,  in the limit as it approaches zero. 

The prime objective is to  determine (2.34), an expansion of which in gives 

Ca - F , , ( ~ ) + F , ~ ( ~ ) ~ + .  a36IA a30, . . ,  (2.44) 

valid in the limit as E + O .  The expansion of the dependent variable h, is not as 
straightforward. I n  order to  determine an expression uniformly valid over the entire 
drop, two separate expansions must be performed (Dussan V. & Chow 1983), one 
valid over the regions in the immediate vicinity of the two straight-line segments on 
the sides of the drop, the other valid over the remainder of the drop. Only the latter 
expansion is pursued since i t  proves sufficient for evaluating Po, and F,,. Hence, 
ho is assumed to have the form 

valid in the limit as e+O.  I n  fact, neither shall a solution be obtained for hoL, nor 
a complete solution for Lo, because they are unnecessary for determining the values 
of Foo and Sol. 

The problem simplifies quite a bit from the outset by simply acknowledging the 
fact that F,, = 0, i.e. when the static contact angle is unique, e = 0, any motion in 
the surrounding fluid would cause the drop to  travel across the surface of the solid. 
Substituting (2.44) and (2.45) into (2.42) and (2.43) gives, respectively, 

(2.46) 

- -  - -  
€ P o l  QH, - $to VH (Vg Loo) +$to VH(V& h o L  ) c In E +  [$hio vH(V& Loll 

+ ~ h , ~ h , ~ ~ H ( v ~ h o o ) + i ~ h , , ~ ~ ~ I ] ~ + ~ ~  ., (2.47) 

valid in the limit as e+O.  Since QH, = O(1) as e+O,  i t  follows that to order 1 and 
E In E ,  respectively 

V&hoo = A,,, VzLoL = A,, (2.48a, b)  

where A,,, and AOL are constants to  be determined. Substituting (2.44) and (2.45) 
into (2.41) gives 

VH.{~h~oVH(P&ho1) + ~ & 0 0 ~ 0 1 }  = 0, (2.49) 

to order E .  It is helpful when expanding both (2.35) and (2.38) to use the explicit 
expression for the location of the contact line (2.36). The expansion given by (2.45) 
implies 

- -  
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valid in the limit as e+O.  The development can be further simplified by anticipating 
the fact that to lowest order the shape of the drop, Loo, and hence, the shape of the 
contact line, Roo, is independent of $. Combining this with the definition of a 
appearing at the beginning of $2.1 implies 

Roo= 1 .  (2.51) 

Substituting (2.45), (2.50) and (2.51) into (2.37), and making the dependence of the 
resulthg expression on e explicit by performing an expansion in ? about 1 similar 
in spirit to (2.28), gives to lowest orders 

- 
- 
hoo(l ,$)  =o ,  h O L ( l , $ ) + H , , ~ ~  = 0, h o l ( l , ~ ) + H o l ~  = 0. 

a7 ( I ,$)  

ahoo l i l , $ ,  
(2.52a, b ,  c)  

In a similar way, substituting (2.45), (2.50) and (2.51) into an expansion of (2.35) 
about F = 1 gives to lowest orders 

% = - - I  a t ? =  1 ( 0 < $ < 2 n ) ,  (2.53) 
- 

a? 

(2.54) 

where it has been assumed that 

$Ao in+$Aole+.  . . ?  

$ R o N $ Z + $ R O , E +  . . . .  

Substituting (2.45), (2.50) and (2.51) into the volume constraint (2.38) gives to lowest 
orders 

3. Solution of (00)-mode 
The boundary-value problem governing h,, is given by (2.48a), (2.52a), (2.53), and 

(2.55a), along with the restriction that Loo evaluated at the centre of the drop, F = 0, 
is bounded. Obtaining the solution is straightforward. It is 

h,, = +(l-P) ,  A,, = -2. (3.1 a ,  b )  

Substituting (31.1 a )  into the volume constraint ( 2 . 5 5 ~ )  gives an expression for the 

4 v  
scale a 

a 3 = - -  

- 

(3.2) n 0,' 
4. Solution for Fool 

4.1. Determination of the form of v& h,, 
As stated in $2.4, the value of Fol can be determined without obtaining the complete 
solution for Lo,. The analysis divides into two parts. The first consists of identifying 
an explicit form for Vh h,,. The second consists of evaluating conditions necessary 
and sufficient for the existence of a solution for h,,. It is these conditions which give 
rise to an expression for FOl. 
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Although not essential, it  is instructive to  establish a precise relationship between 
& cOl and the pressure field within the drop. A new dimensionless expression for the 
pressure 9 is introduced scaled with &,/a. The scale represents a characteristic 
value of the jump in pressure across the fluid interface due to the presence of surface 
tension. The two dimensionless pressures are related by P = 9/Ga. It can readily be 

- shown that 

valid in the limit as 0,+0 and F + O .  Note that the value of go does not depend 
on 2, a direct consequence of (2 .24b) .  

Using polar coordinates and the solution for hoo presented in (3.1 a),  (2.49) becomes 

l a  i a  
r ar ar pa+ 
- - { ( 1 - P )3 F%} + - - { ( 1 - r'3 )3 = 12FO1 F(r2 - 1 ) cos $, (4.2) 

1 

where i = i cos $ - 4  sin q5. A solution is sought of the form 

Substituting (4.3) into (4.2) gives 

I d  n2(1 - P ) 3  12F(P--l) forn = 1 ,  
r d? r 2  pn={ 0 forn=2 ,3 ,  . . . .  (4.5) - - { ( 1 - ~ ) 3  r - 

The boundary conditions appropriate for these equations are 

P 0 i s b o u n d e d a t r = 0 ,  P n = O a t ? = O  f o r n =  1,2 ,3  , . . . ,  (4.6a,b) 

(4.6b) resulting from the requirement that  the function Pol must be continuous a t  
r = 0, and d5' 

r ,  d F  2 L - 0  asp-1 f o r n = 0 , 1 , 2  ,..., (4.7) 

a direct requirement that  U - t O  uniformly as x approaches the location of the static 
contact line. 

It follows directly from (4.4), (4.6a) and (4.7) that 

Po = constant. (4.8) 
The solutions for (Pn: n = 2 ,3 .  . .}  are also obtained in a rather straightforward 
manner. Multiplying (4.5) by ?Pn, integrating with respect to  ? over the interval 
[O ,  11, and making repeated use of (4.7) and (4.6b) gives 

J (1--)35';dr 
0 

Since n2 is both real and positive, and Pn is also real, i t  must be concluded that 

{Pn = 0: n = 2 ,3 , .  . .}. 
The solution for Pi is given in 54.3. 

(4.9) 
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4.2. Determination of Fol 
The boundary-value problem has been reduced to 

- V ~ h o ,  = .FOl{PO+Pl(?) cos$},  (4.10) 

obtained by substituting (4.3), (4.8), and (4.9) into (4.1), subject to the boundary 
condition 

h (4.11) 
- O1 aho1 a? - i - 1  f o r $ < $ < $ n , ? = l ,  

obtained by substituting (3 . la)  into (2 .52~)  and (2.54). It is desirable to transform 
the problem defined by (4.10) and (4.11) into one involving a linear operator. This 
is accomplished by expressing hol as 

0 f o r - j n < $ < j n , ? = l ,  

KOI = f l+ XP, 

where Jl"P represents any function continuous on the open set { ( F ,  $)I0 < 4 < 2n, F < I }  
and satisfying (4.11) with hol replaced by Z,,; and X satisfies 

-8&& = FOl{PO+Pl(?) c0s$}+V~.xp, (4.12) 

subject to the boundary condition 

f l - - = O  f o r O < $ < 2 ~ , ? =  1 .  (4.13) 

Fredholm's Alternative may now be used to establish the conditions under which a 
solution exists to (4.12) and (4.13). 

The necessary and sufficient conditions arising from Fredholm's Alternative 
establishing the existence of a solution to (4.12) and (4.13) requires that the function 
appearing on the right-hand side of (4.12) be orthogonal to every element of the null 
space of the adjoint linear operator. Introducing the inner product 

a? 

i t  is well known that the linear operator defined by (4.12) and (4.13) is self-adjoint. 
It is also straightforward to establish that the null space of the operator is spanned 
by the two linearly independent functions 

{?sin $, i. cos $}. (4.14) 

Hence, a solution exists if and only if 

<.FOl{PO + PI(?) cos $} + V& X*, 9) = 0, (4.15) 

where Y denotes any linear combination of the two functions appearing in (4.14). 
Using the identity 

it follows directly from (4.15) that 
2 

K Jol Pl(F) r"3 di.' 
.FO1 = (4.16) 
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when 3 = rcos$. The identity 0 = 0 is obtained when Y = ? sin 4. 
4.3. Evaluation of PI 

All that remains is to evaluate 

PI(?) t dr. 
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This requires obtaining a solution to  (4.5), a singular linear second-order ordinary 
differential equation with variable coefficients, subject to the boundary conditions 
(4.66) and(4.7). Two independent numerical techniques have been used to analyse 
this two-point boundary-value problem, the results of which are in very good mutual 
agreement. 

It is useful to begin by analysing Pl in the neighbourhoods of ? = 0 and ? = 1 since 
(4.5) is singular a t  both of these end points. It is straightforward to show that near 
? = 0, ffl is given by 

Pl = - { ; ? 3 + y ? 5 + + ? 7 + .  . . } + C { ? + ~ ? + g ? 5 + g r ' + .  . .}, (4.17) 

where C denotes an unknown constant, and (4.17) satisfies the boundary condition 
(4.66). The simplicity of (4.17) reflects the fact that  the singular nature of (4.5) a t  
? = 0 arises from the degeneracy of the polar coordinate system and not from the 
physics of the problem. The situation is different near ? = 1 .  Here, a convenient form 
to assume for PI is 00 

Pl = C (l-F)n{BnL1n(l-?)+Bn}. (4.18) 
n=-2 

Substituting (4.18) into (4.5), and performing some straightforward algebraic 
manipulations gives 

p 7-- In ( 1 - r )  - i( 1 - f )  - ( 1 - F ) 2  {& In ( 1 - F) + $} 

- (1 -?)3 {% In (1 -?) +0.3694}-% (1 -F)4 In (1 -?) + . . . 
1 

+ s O ~ 1 + 3 1 - i 9 2 + 3 1 - q 3 + .  . . a +L 

i5 l n ( l - ~ ) - ~ ( l - ? ) - ~ ( l - ? ) 2 1 n ( l - ~ ) +  . . .  4 , +--- (4.19) 

where the expressions multiplying B, and B-, represent the two linearly independent 
solutions to  the homogeneous form of (4.5). The boundary condition (4.7) requires 
B, = 0. Hence, i t  is apparent that  the solution near ? = 1 is singular even though the 
contact line is static, a fact which could have been anticipated at the outset due to 
the differing forms of the boundary conditions assumed a t  the free and solid surfaces 
of the drop. 

The boundary-value problem can now be reformulated for the purpose of facilitating 
its numerical analysis by taking advantage of the above derived characteristics of 
PI near ? = 1 .  A new dependent variable, PD, is introduced defined by 

PD = Pl+; ln( l - f ) .  (4.80) 

5 
1--r 

Substituting (4.20) into (4.5) gives 

(I-- ,  3 r )  
P D  - I d  - ( ( 1 - t 13 r 2) - 

F dF 

ln(1-F) -12F( l - t ) ,  (4.81) 
(1 - P)' +- n (1 + 3r)( 1 + ?)( 1 - 27) 

= - f ( l - - r 2 ) [  r t 
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r 

0 
0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 
0.32 
0.34 
0.36 

P D  r 

0 0.38 
0.0369 0.40 
0.0732 0.42 
0.1090 0.44 
0.1442 0.46 
0.1790 0.48 
0.2132 0.50 
0.2470 0.52 
0.2803 0.54 
0.3132 0.56 
0.3456 0.58 
0.3776 0.60 
0.4093 0.62 
0.4406 0.64 
0.4715 0.66 
0.5020 0.68 
0.5322 0.70 
0.5621 0.72 
0.5917 

TABLE 1 

P D  

0.6210 
0.6499 
0.6786 
0.7071 
0.7352 
0.7631 
0.7907 
0.8182 
0.8453 
0.8723 
0.8991 
0.9256 
0.9520 
0.9781 
1.004 
1.030 
1.056 
1.081 

r P D  

0.74 1.107 
0.76 1.132 
0.78 1.157 
0.80 1.182 
0.82 1.207 
0.84 1.232 
0.86 1.256 
0.88 1.281 
0.90 1.305 
0.92 1.330 
0.94 1.355 
0.96 1.379 
0.98 1.404 
1.00 1.429 

1 .o 

P D  

0.8 

0.6 

0.4 

i 

FIauRE 2. The dependence of PD on i.. 

subject to the boundary conditions 
P,=O a t F = O ,  (4.22) 

(4.23) 

where (4.22) comes directly from (4.66), and (4.23) can be deduced from (4.19). 
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r l  

Sullivan 1.287 
x u  1.290 

0.00023 
0.00052 

TABLE 2 

Two numerical solutions have been obtained to (4.21), (4.22), and (4.23). Mr 
Christopher Sullivan performed an analysis using a finite element method outlined 
in Sullivan (1984). Mr Jian-Jun Xu used a computer program called SUPORT. Since 
both results agree to at least four significant figures uniformly over the entire interval 
f E [0, 11, only one set is presented in table 1 and illustrated in figure 2.  The values 
of s,' PI(?) t d?, 

and 

are given in table 2 .  The latter integral should be zero, a result which can easily be 
established by integrating (4.5) over the interval ? E  [0, 11 and using (4.6b) and (4.7). 

5. Conclusions 
The heart of the problem has been to determine the maximum value of dU/dZ 
consistnt with a stationary drop. Upon combining the definition of Ca with (2.42) 
and (4.16), one obtains to lowest order in OA+O and (O,-O,)/O,+O 

dU 0.452vOi (@,-OR) -- 
dZ V + S  

where it has been assumed that 

lu'$,r"dF% 1.3. 

It is of interest to note that the critical value of dU/dZ is independent of the viscosity 
of the droppd. This can be viewed as following directly from the relationship defining 
the characteristic speed of the fluid in the drop Ud, i.e. pd LT, = p, Us O,, motivated 
by the shear stress boundary condition at  the fluid-fluid interface. Consequently, the 
appearances of pd in both the definition of Cu, p, ud/@@$,, and in the scale for the 
pressure within the drop, p, U d / a O i ,  are 'disguised' in the form U,p , /@Oi  and, 
Uspa/aO,, respectively. While the value of pd does not affect the critical value of 
dU/dZ, it does determine the duration of time necessary for the drop to accommodate 
to any changes in the shear stress imposed by the motion of the surrounding fluid, 
the appropriate timescale being a/ cTd. Thus, it would take a relatively long time for 
a very viscous drop to fully respond to the conditions dictated by the surrounding 
fluid. Everything else being equal, two drops composed of fluids with greatly different 
viscosities have identical crictical configurations. 
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FIQUKE 3. The variation of uHo-i a t  the fluid interface dong 2 = 0 
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FIGURE 4. The variation of QHH,*i along .? = 0. 
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It is also of interest to examine the velocity field of the fluid within the drop. 
Substituting (2.48a, b)  and (4.10) into (2.46) gives 

aHo - i.+i+(~.+i2-&oo]VH(P'l COS#J). 

As might have been anticipated, it can readily be shown that the i-component of the 
velocity of the fluid is positive everywhere on the fluid interface of the drop, i.e. the 
fluid a t  the surface of the drop is moving in the same direction as that of its 
surroundings. An evaluation of uHo*i a t  Z = h,, and S = 0 is given in figure 3. 
Although its value is everywhere positive, there appears to be an unanticipated 
minimum at y = 0. However, this can easily be explained by a more detailed 
examination of the velocity field. The induced flow a t  the fluid interface of the drop 
must result in a net accumulation of fluid on the downstream end of the drop, as 
indicated in figure l ( a ) ,  causing the curvature of the fluid interface to have its 
greatest value there. The varying value of the curvature along the length of the drop 
creates the gradient in pressure necessary to cause a return flow in the -i direction 
so that the continuity equation is not violated, i.e. 

where 0,- denotes the width of the drop a t  any fixed value of?. Substituting (2.48a, b )  
and (4.10) into (2.47) gives 

- 
Q Ho =-- $:o VH(Pl cos 9) +$Loo i .  

Upon evaluating QHo-i  along x = 0, one finds that the return flow occurs primarily 
near the centre of the drop, see figure 4. This is not surprising because the centre of 
the drop represents the thickest region, hence offering the path of least resistance for 
the returning flow of fluid. The minimum in UH0*i  along z = 0 a t  y = 0 merely 
reflects the fact that  a substantial quantity of fluid is moving in the -i direction 
beneath the fluid interface. 

The most restrictive assumptions in this analysis are the small slope approximation, 
0, < 1, and, as in the two previous studies in this series, the necessity for small 
contact angle hysteresis, (0, - 0, )/@, < 1 .  

It is a pleasure to acknowledge Mr Jian-Jun Xu at Northwestern University and Mr 
Christopher F. Sullivan at Lehigh University who are responsible for the results 
appearing in figure 2 and tables 1 and 2. 
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which this work would not have been possible. 
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